top of page

Biotechnological applications derived from deep sea organisms

Medical and pharmaceutical 

Industrial 

References:

  1. Smith III, AB, Sugasawa, K, Atasoylu, O, Yang, C-PH & Horwitz, SB 2011, 'Design and Synthesis of (+)-Discodermolide–Paclitaxel Hybrids Leading to Enhanced Biological Activity', Journal of medicinal chemistry, vol. 54, no. 18, pp. 6319-6327.

  2. Longley, RE, Gunasekera, SP, Faherty, D, McLane, J & Dumont, F 1993, 'Immunosuppression by discodermolide', Annals of the New York Academy of Sciences, vol. 696, no. 1, pp. 94-107.

  3. Forman, MS, Trojanowski, JQ & Lee, VM 2004, 'Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs', Nature medicine, vol. 10, no. 10, pp. 1055-1063.

  4. Vogt, A, D'Angelo, C, Oswald, F, Denzel, A, Mazel, CH, Matz, MV, Ivanchenko, S, Nienhaus, GU & Wiedenmann, J 2008, 'A green fluorescent protein with photoswitchable emission from the deep sea', PloS one, vol. 3, no. 11, p. e3766.

  5. Stevely, J & Sweat, D 2008, 'Florida’s Marine Sponges', Exploring the Potential and Protecting theResource. SeaGrant.

  6. Tasiemski, A, Jung, S, Boidin-Wichlacz, C, Jollivet, D, Cuvillier-Hot, V, Pradillon, F, Vetriani, C, Hecht, O, Sönnichsen, FD & Gelhaus, C 2014, 'Characterization and function of the first antibiotic isolated from a vent organism: the extremophile metazoan Alvinella pompejana', PloS one, vol. 9, no. 4, p. e95737.

  7. Andrianasolo, EH, Haramaty, L, McPhail, KL, White, E, Vetriani, C, Falkowski, P & Lutz, R 2011, 'Bathymodiolamides A and B, ceramide derivatives from a deep-sea hydrothermal vent invertebrate mussel, Bathymodiolus thermophilus', Journal of natural products, vol. 74, no. 4, pp. 842-846.

  8. Pietrow, O, Panek, A, & Synowiecki, J 2013, ‘Extracellular proteolytic activity of Deinococcus geothermalis’, African Journal of Biotechnology, vol. 12, no. 25, pp. 4020-4027.

  9. Dalmaso, G. Z. L., Ferreira, D., & Vermelho, A. B. 2015, ‘Marine extremophiles: a source of hydrolases for biotechnological applications’, Marine drugs, vol. 13, no. 4, pp. 1925-1965.

  10. Sevcenco, A-M, Paravidino, M, Vrouwenvelder, JS, Wolterbeek, HT, van Loosdrecht, MC & Hagen, WR 2015, 'Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes', Water research, vol. 76, pp. 181-186.

  11. Li, B, Wang, Z, Li, S, Donelan, W, Wang, X, Cui, T & Tang, D 2013, 'Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus', BMC biotechnology, vol. 13, no. 1, p. 73.

  12. Chong, SS, Eichler, EE, Nelson, DL & Hughes, MR 1994, 'Robust amplification and ethidium‐visible detection of the fragile X syndrome CGG repeat using Pfu polymerase', American journal of medical genetics, vol. 51, no. 4, pp. 522-526.

  13. Chien, A, Edgar, DB & Trela, JM 1976, 'Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus', Journal of bacteriology, vol. 127, no. 3, pp. 1550-1557.

  14. 1. Lelchat, F., Cozien, J., Le Costaouec, T., Brandilly, C., Schmitt, S., Baudoux, A. Collieu-Jouault, S. & Boisset, C. 2014, ‘Exopolysaccharide biosynthesis and biodegradation by a marine hydrothermal Alteromonas sp. Strain’, Applied microbiology and biotechnology, vol. 99, no. 8, pp.1-11.

  15. Petit, A. C., Noiret, N., Guezennec, J., Gondrexon, N., & Colliec-Jouault, S. 2007, ‘Ultrasonic depolymerization of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid’, Ultrasonics sonochemistry, vol. 14, no. 2, pp. 107-112

 

 

 

deep sea © 2015 by flsaqua 2015, Proudly created with Wix.com  | flsaqua2015@gmai.com |

  • Google Clean
bottom of page